Numerical methods for stochastic Volterra integral equations with weakly singular kernels

نویسندگان

چکیده

Abstract In this paper we first establish the existence, uniqueness and Hölder continuity of solution to stochastic Volterra integral equations (SVIEs) with weakly singular kernels, singularities $\alpha \in (0, 1)$ for drift term $\beta 1/2)$ term. Subsequently, propose a $\theta $-Euler–Maruyama scheme Milstein solve numerically obtain strong rates convergence both schemes in $L^{p}$ norm any $p\geqslant 1$. For rate is $\min \big\{1-\alpha ,\frac{1}{2}-\beta \big\}~ $ \{1-\alpha ,1-2\beta \}$. These results on are significantly different from those it similar SVIEs regular kernels. The source difficulty lack Itô formula equations. To get around use Taylor subsequently carrying out sophisticated analysis equation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COLLOCATION METHOD FOR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY KERNELS

In this paper it is shown that the use of‎ ‎uniform meshes leads to optimal convergence rates provided that‎ ‎the analytical solutions of a particular class of‎ ‎Fredholm-Volterra integral equations (FVIEs) are smooth‎.

متن کامل

collocation method for fredholm-volterra integral equations with weakly kernels

in this paper it is shown that the use of‎ ‎uniform meshes leads to optimal convergence rates provided that‎ ‎the analytical solutions of a particular class of‎ ‎fredholm-volterra integral equations (fvies) are smooth‎.

متن کامل

A Hybrid Collocation Method for Volterra Integral Equations with Weakly Singular Kernels

The commonly used graded piecewise polynomial collocation method for weakly singular Volterra integral equations may cause serious round-off error problems due to its use of extremely nonuniform partitions and the sensitivity of such time-dependent equations to round-off errors. The singularity preserving (nonpolynomial) collocation method is known to have only local convergence. To overcome th...

متن کامل

Product integration for Volterra integral equations of the second kind with weakly singular kernels

We introduce a new numerical approach for solving Volterra integral equations of the second kind when the kernel contains a mild singularity. We give a convergence result. We also present numerical examples which show the performance and efficiency of our method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ima Journal of Numerical Analysis

سال: 2021

ISSN: ['1464-3642', '0272-4979']

DOI: https://doi.org/10.1093/imanum/drab047